skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Long, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MnCoGe-based materials have the potential to exhibit giant magnetocaloric effects due to coupling between magnetic ordering and a martensitic phase transition. Such coupling can be realized by matching the temperatures of the magnetic and structural phase transitions. To understand the site preference of different elements and the effect of hole or electron doping on the stability of different polymorphs of MnCoGe, crystal orbital Hamilton population (COHP) analysis has been employed for the first time to evaluate peculiarities of chemical bonding in this material. The shortest Mn–Mn bond in the structure is found to be pivotal to the observed ferromagnetic behavior and structural stability of hexagonal MnCoGe. Based on this insight, eliminating anti-bonding features of the shortest Mn-Mn bond at the Fermi energy is proposed as a feasible way to stabilize the hexagonal polymorph, which is then realized experimentally by substitution of Zn for Ge. The hexagonal MnCoGe structure is stabilized due to depopulation of the anti-bonding states and strengthening of the Mn–Mn bonding. This change in chemical bonding leads to anisotropic evolution of lattice parameters. The structural and magnetic properties of Zn-doped MnCoGe have been elucidated by synchrotron X-ray diffraction and magnetic measurements, respectively. 
    more » « less
  2. Abstract A giant barocaloric effect (BCE) in a molecular material Fe3(bntrz)6(tcnset)6(FBT) is reported, where bntrz = 4‐(benzyl)‐1,2,4‐triazole and tcnset = 1,1,3,3‐tetracyano‐2‐thioethylepropenide. The crystal structure of FBT contains a trinuclear transition metal complex that undergoes an abrupt spin‐state switching between the state in which all three FeIIcenters are in the high‐spin (S = 2) electronic configuration and the state in which all of them are in the low‐spin (S = 0) configuration. Despite the strongly cooperative nature of the spin transition, it proceeds with a negligible hysteresis and a large volumetric change, suggesting that FBT should be a good candidate for producing a large BCE. Powder X‐ray diffraction and calorimetry reveal that the material is highly susceptible to applied pressure, as the transition temperature spans the range from 318 at ambient pressure to 383 K at 2.6 kbar. Despite the large shift in the spin‐transition temperature, its nonhysteretic character is maintained under applied pressure. Such behavior leads to a remarkably large and reversible BCE, characterized by an isothermal entropy change of 120 J kg−1K−1and an adiabatic temperature change of 35 K, which are among the highest reversible values reported for any caloric material thus far. 
    more » « less